Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Oct 9;593(1):77-81.
doi: 10.1016/0006-8993(92)91266-h.

Zinc (Zn2+) blocks voltage gated calcium channels in cultured rat dorsal root ganglion cells

Affiliations

Zinc (Zn2+) blocks voltage gated calcium channels in cultured rat dorsal root ganglion cells

D Büsselberg et al. Brain Res. .

Abstract

Dorsal root ganglion cells (DRGs) exhibit 3 types of voltage-dependent calcium channels. We have cultured DRGs from 2- to 4-day-old rat pups and obtained whole-cell patch-clamp recordings of calcium-channel currents after 1-5 days in culture. The calcium-channel currents (carried by barium) were recorded with tetrodotoxin (TTX) in the external solution. A cesium-based solution containing Na-ATP, HEPES and EGTA was used in the recording pipette. Cells were held at -80 mV and calcium channel currents were evoked by stepping to depolarized voltages. The divalent cation zinc (Zn2+) blocked sustained and transient voltage sensitive calcium channel currents. Onset of the blockade was fast and a steady-state was reached within 5-15 min, depending upon the concentration used. The IC50 for inhibition of the peak current evoked by a step depolarization from -80 mV to 0 mV (N plus L channels) for 80 ms was 69 microM Zn2+ and the Hill slope about 1. The calcium current evoked by a voltage step from -80 mV to voltages between -40 mV and -15 mV (T-type current) was more sensitive (> 80% block with 20 microM Zn2+). During wash the effect was only partly reversible in 50% of the neurons. Thus, Zn2+ is a potent blocker of voltage dependent calcium currents in mammalian neurons, especially of T-type currents.

PubMed Disclaimer

Publication types

LinkOut - more resources