Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Dec:64-65 Spec No:257-64.
doi: 10.1016/0378-4274(92)90197-r.

The development of a new small-scale smoke toxicity test method and its comparison with real-scale fire tests

Affiliations
Comparative Study

The development of a new small-scale smoke toxicity test method and its comparison with real-scale fire tests

B C Levin. Toxicol Lett. 1992 Dec.

Abstract

A comprehensive methodology has been developed for obtaining and using smoke toxicity data for fire hazard analysis. This bench-scale method can simulate diverse fire conditions and identify extremely toxic smoke under both pre- and post-flashover conditions. However, incidence data show that most of the fire deaths in the U.S. occur outside the room of fire origin from smoke and toxic gases that are generated from a fire under post-flashover conditions. Therefore, the most relevant real-scale combustion conditions to simulate in the bench-scale apparatus would be the post-flashover conditions which are achieved by using radiant heat, a high heat flux, and correcting the bench-scale carbon monoxide (CO) results to agree with CO yields observed in real-scale post-flashover fires. The number of test animals (Fischer 344 male rats) is minimized by using the N-Gas Model to estimate the LC50 value from the chemical analysis of the smoke. The current N-Gas Model predicts the toxicity of complex fire gas mixtures based on a large data base of experimental results of individual and mixed gases that include CO, CO2, reduced O2, HCN, HCl, HBr, and NOx. The prediction is checked with a small number of animal tests and an approximate LC50 value is determined. The bench-scale results have been validated with full-scale room wall burns of a limited number of materials of widely differing characteristics chosen to challenge the system. The toxic potency values are assessed to determine if the smoke from a material or product is unusually or extremely toxic and can then be used in computations of fire hazard.

PubMed Disclaimer

Publication types

LinkOut - more resources