Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992;75(3):165-72.
doi: 10.1016/0248-4900(92)90137-p.

A hypothesis on p34cdc2 sequestration based on the existence of Ca(2+)-coordinated changes in H+ and MPF activities during Xenopus egg activation [corrected]

Affiliations
Review

A hypothesis on p34cdc2 sequestration based on the existence of Ca(2+)-coordinated changes in H+ and MPF activities during Xenopus egg activation [corrected]

M Charbonneau et al. Biol Cell. 1992.

Erratum in

  • Biol Cell 1992;76(1):111

Abstract

The entry into, and exit from, mitosis are controlled by a universal M-phase promoting factor (MPF) composed of at least p34cdc2 and a cyclin. Embryonic systems are convenient for studying the association and dissociation of the active MPF complex because oocytes and eggs are naturally arrested at a specific point of the cell cycle until progression to the next point is triggered by a hormonal signal or sperm. In amphibians, eggs prior to fertilization are arrested at metaphase 2 of meiosis due to the presence of a stabilized MPF complex. Fertilization (egg activation) produces a transient increase in intracellular free Ca2+, a propagating Ca2+ wave, that specifically triggers the destruction of cyclin, leading to MPF inactivation and entry into the first embryonic inter-phase. We have recently shown that intracellular pH (pHi) variations in amphibian eggs, a large increase at fertilization and small oscillations during the embryonic cell cycle, were temporally and functionally related to the corresponding changes in MPF activity. In addition, the recent finding that the pHi increase at fertilization in Xenopus eggs is a propagating, Ca(2+)-dependent pH wave which closely follows the Ca2+ wave, together with the absence in the egg plasma membrane of pHi-regulating systems responsible for that pHi increase, suggest the existence of cortical or subcortical vesicles acidifying in the wake of the Ca2+ wave, thus producing the pH wave.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources