Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Dec;263(6 Pt 1):L634-44.
doi: 10.1152/ajplung.1992.263.6.L634.

Rabbit surfactant protein C: cDNA cloning and regulation of alternatively spliced surfactant protein C mRNAs

Affiliations

Rabbit surfactant protein C: cDNA cloning and regulation of alternatively spliced surfactant protein C mRNAs

V Boggaram et al. Am J Physiol. 1992 Dec.

Erratum in

  • Am J Physiol 1993 Feb;264(2 Pt 1):section L followi

Abstract

Surfactant protein C (SP-C), a hydrophobic protein of pulmonary surfactant is essential for surfactant function. Toward elucidating molecular mechanisms that mediate regulation of SP-C gene expression in rabbit lung, we isolated and characterized cDNAs encoding rabbit SP-C and studied the regulation of SP-C gene expression during fetal lung development and by adenosine 3',5'-cyclic monophosphate (cAMP) and dexamethasone in fetal lung tissues in vitro. We found that rabbit SP-C is highly homologous to SP-C of other species and is encoded by two mRNAs that differ by an insertion of 31 nucleotides in the 3' untranslated regions. SP-C mRNAs were classified into two types based on the nucleotide sequence; type I represents RNA without the 31 nucleotide insert and comprises approximately 80-90% of total SP-C mRNA content, whereas type II represents RNA containing the insert and comprises approximately 10-20% of total SP-C mRNA content. SP-C mRNAs were induced in a coordinate manner during fetal lung development and by cAMP and dexamethasone in fetal lung tissues in vitro. Southern hybridization analysis of genomic DNA suggested that SP-C mRNAs are encoded by a single gene. Polymerase [corrected] chain reaction-amplification of genomic DNA with oligonucleotide primers flanking the insertional sequence and sequence analysis of amplified DNA showed that SP-C mRNAs are produced by alternative use of 3' splice sites of intron 5 of SP-C gene.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources