Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992:93:167-87; discussion 187-8.
doi: 10.1016/s0079-6123(08)64571-9.

Ontogeny of peptides in human hypothalamus in relation to sudden infant death syndrome (SIDS)

Affiliations
Review

Ontogeny of peptides in human hypothalamus in relation to sudden infant death syndrome (SIDS)

N Kopp et al. Prog Brain Res. 1992.

Abstract

The brains of mammals are not mature at birth, in particular in humans. Growth and brain development are influenced by the hormonal state in which the hypothalamus plays the major regulatory role. The maturation of the hormonal patterns leads to the physiological establishment of chronological variations as revealed by the circadian variations of both hypothalamic peptides and pituitary hormones (as illustrated for hypothalamic-pituitary-thyroid axis by the determination of thyro-stimulating hormone (TSH) and thyrotropin-releasing hormone (TRH) circadian rhythms in the rat (Jordan et al., 1989)). It has been established that hypothalamic peptide variations are regulated by hormonal feed-back and amine systems, with the maturation of the latter also being dependent upon the whole functional maturation of the brain. Though these systems have been studied in the rat, very little information is currently available with regard to the human brain. The only biochemical or immunohistochemical information published to date concerns either the fetus or the adult. We have studied four main peptidergic systems (somatostatin-releasing inhibiting factor (SRIF), thyrotropin-releasing hormone (TRH), luteinizing hormone-releasing hormone (LHRH) and delta sleep inducing peptide (DSIP) in post-mortem adults and infants and in sudden infant death syndrome (SIDS) brains either by autoradiography and/or immunochemistry of radioimmunology. From a technical point of view, human brain studies display certain pitfalls not present in animal studies. These may be divided into two subclasses: ante- and post-mortem. Ante-mortem problems concern mainly sex, laterality, nutritional and treatment patterns while post-mortem problems concern post-mortem delay and conditions before autopsy and hypothalamic dissection. This might induce dramatic changes in morphological, immunochemical and autoradiographic evaluations. The matching of pathological subjects with controls is particularly difficult in the case of SIDS because of the rapid changes which take place in physiological regulatory processes during the first year of life. Thus, the treatment of hypothalamic tissue samples both for immunochemistry, radioimmunology and autoradiographic studies required techniques which must be rigorously controlled. For example, SRIF studies were carried out with three different antibodies, which gave similar results. The use of different technical procedures as well as different antibodies is discussed. These types of differences might explain, at least in part, the discrepancy observed until now. As previously described in the fetus (Bugnon et al., 1977b; Bouras et al., 1987), we confirmed that in the infant hypothalamic SRIF immunoreactive cell bodies are present in the paraventricular and suprachiasmatic nuclei and in the periventricular area.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources