Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Dec;36(12):2747-57.
doi: 10.1128/AAC.36.12.2747.

Mode of antiviral action of penciclovir in MRC-5 cells infected with herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus

Affiliations
Comparative Study

Mode of antiviral action of penciclovir in MRC-5 cells infected with herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus

D L Earnshaw et al. Antimicrob Agents Chemother. 1992 Dec.

Abstract

The metabolism and mode of action of penciclovir [9-(4-hydroxy-3-hydroxymethylbut-1-yl)guanine; BRL 39123] were studied and compared with those of acyclovir. In uninfected MRC-5 cells, low concentrations of the triphosphates of penciclovir and acyclovir were occasionally just detectable, the limit of detection being about 1 pmol/10(6) cells. In contrast, in cells infected with either herpes simplex virus type 2 (HSV-2) or varicella-zoster virus (VZV), penciclovir was phosphorylated quickly to give high concentrations of the triphosphate ester. Following the removal of penciclovir from the culture medium, penciclovir-triphosphate remained trapped within the cells for a long time (half-lives, 20 and 7 h in HSV-2- and VZV-infected cells, respectively). In HSV-2-infected cells, acyclovir was phosphorylated to a lesser extent and the half-life of the triphosphate ester was only 1 h. We were unable to detect any phosphates of acyclovir in VZV-infected cells. (S)-Penciclovir-triphosphate inhibited HSV-1 and HSV-2 DNA polymerase competitively with dGTP, the Ki values being 8.5 and 5.8 microM, respectively, whereas for acyclovir-triphosphate, the Ki value was 0.07 microM for the two enzymes. Both compounds had relatively low levels of activity against the cellular DNA polymerase alpha, with Ki values of 175 and 3.8 microM, respectively. (S)-Penciclovir-triphosphate did inhibit DNA synthesis by HSV-2 DNA polymerase with a defined template-primer, although it was not an obligate chain terminator like acyclovir-triphosphate. These results provide a biochemical rationale for the highly selective and effective inhibition of HSV-2 and VZV DNA synthesis by penciclovir and for the greater activity of penciclovir than that of acyclovir when HSV-2-infected cells were treated for a short time.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Virol. 1977 Nov;24(2):618-26 - PubMed
    1. Antiviral Res. 1984 Apr;4(1-2):63-70 - PubMed
    1. J Virol. 1990 Dec;64(12):5976-87 - PubMed
    1. J Biol Chem. 1989 May 5;264(13):7405-11 - PubMed
    1. Antimicrob Agents Chemother. 1989 Feb;33(2):223-9 - PubMed

Publication types

MeSH terms

LinkOut - more resources