Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep:455:367-81.
doi: 10.1113/jphysiol.1992.sp019306.

The peptide CGRP increases a high-threshold Ca2+ current in rat nodose neurones via a pertussis toxin-sensitive pathway

Affiliations

The peptide CGRP increases a high-threshold Ca2+ current in rat nodose neurones via a pertussis toxin-sensitive pathway

J W Wiley et al. J Physiol. 1992 Sep.

Abstract

1. The whole-cell variation of the patch clamp technique was used to study the effect of calcitonin gene-related peptide (CGRP) on voltage-gated calcium currents in acutely dissociated rat nodose ganglion neurones and to determine if its effects were mediated via a guanine nucleotide binding (G) protein. 2. Both low- and high-threshold calcium current components were present in nodose ganglion neurones. CGRP had no effect on the isolated low-threshold current component. However, CGRP (1-1000 nM, ED50 = 50 nM) caused a concentration-dependent increase in high-threshold calcium currents. CGRP (1 microM) increased the peak of these calcium currents 21 +/- 4% over controls. 3. CGRP enhanced a transient high-threshold calcium current evoked from a holding potential of -80 mV but did not affect the slowly inactivating high-threshold current evoked from -40 mV. Multiple high-threshold calcium currents have been reported in sensory neurones. We cannot state unequivocally which high-threshold calcium current component was enhanced by CGRP. However, based on the observation that CGRP increased a transient but not the slowly inactivating high-threshold calcium current, we believe the peptide enhanced primarily the N-type calcium current component. 4. CGRP increased the maximal peak current and caused a modest negative shift of < or = 10 mV in the peak of the current-voltage (I-V) relation in three of six neurones. In the remaining three neurones the peptide increased the maximal peak current without a detectable shift in the peak of the I-V relation. 5. To determine if the CGRP-induced enhancement in calcium current was associated with an increase in calcium conductance, we studied the effect of the peptide on the instantaneous current-voltage (I-V) relation when currents were evoked at a clamp potential (Vc) of +30 mV, positive to the observed maximal current (Vc = 0 to +10 mV). CGRP increased the maximal conductance 23 +/- 4%. 6. The enhancement of calcium current by CGRP was not due to a shift in the voltage dependency of steady-state inactivation of the calcium channels. The stimulatory effect of CGRP on calcium current was evaluated by evoking currents from different holding potentials (Vh) at the same Vc (+10 mV). CGRP-induced increases in calcium currents were similar over the range of (Vh) from -60 to -110 mV, suggesting that the peptide did not alter voltage-dependent steady-state inactivation.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1991 Jun 20;351(6328):657-9 - PubMed
    1. Pflugers Arch. 1985 Oct;405(3):285-93 - PubMed
    1. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6656-9 - PubMed
    1. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9035-9 - PubMed
    1. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4313-7 - PubMed

Publication types

MeSH terms