Actions of three structurally distinct sea anemone toxins on crustacean and insect sodium channels
- PMID: 1336629
- DOI: 10.1016/0041-0101(92)90512-4
Actions of three structurally distinct sea anemone toxins on crustacean and insect sodium channels
Abstract
The membrane actions of three recently isolated polypeptide neurotoxins from the sea anemones Stichodactyla helianthus (toxin ShI), Condylactis gigantea (toxin CgII) and Calliactis parasitica (toxin CpI) were investigated on action potentials and voltage-clamp membrane currents of the giant axon of the crayfish Procambarus clarkii. The first two toxins were also tested on the cockroach (Periplaneta americana) giant axon. All three toxins were particularly lethal to crustaceans, moderately toxic to an insect (cockroach), and essentially non-toxic to a mammal (mouse). ShI and CgII were 50- to 100-fold more potent on crayfish than on cockroach axons; this difference in activity was correlated with the relative reversibility of their effects on these arthropod axons. The crustacean selectivity of these toxins is therefore due largely to their greater affinity for crustacean sodium channels. All three toxins prolonged crayfish giant axon action potentials by selectively slowing Na channel inactivation without greatly affecting activation. Before toxin treatment, inactivation was nearly exponential, with a time constant less than 1 msec. After treatment, the inactivation time course could be described as the sum of two exponentially decaying components, plus a large steady-state component. The major component possessed the slower (10-20 msec) time constant. The steady-state component increased with depolarization, causing the sodium channel steady-state inactivation curve to reach a minimum between -60 and -20 mV and then increase at more positive potentials. All three toxins shifted the peak sodium current-voltage relation to the left. This voltage shift was greater at 20 degrees C than at 10 degrees C. Maintained membrane depolarization during toxin wash-in delayed the appearance of modified Na channels. Also, prolonged depolarization of toxin-treated axons converted modified sodium channels back to normal ones. The toxins did not affect potassium and leakage currents. Our results indicate that the three crustacean-active sea anemone toxins share a common electrophysiological action on arthropod sodium channels, at least at the macroscopic level.
Similar articles
-
Sea anemone toxins affecting voltage-gated sodium channels--molecular and evolutionary features.Toxicon. 2009 Dec 15;54(8):1089-101. doi: 10.1016/j.toxicon.2009.02.028. Epub 2009 Mar 5. Toxicon. 2009. PMID: 19268682 Free PMC article. Review.
-
A new toxin from the sea anemone Condylactis gigantea with effect on sodium channel inactivation.Toxicon. 2006 Aug;48(2):211-20. doi: 10.1016/j.toxicon.2006.05.001. Epub 2006 May 19. Toxicon. 2006. PMID: 16814340
-
Effects of several sea anemone and scorpion toxins on excitability and ionic currents in the giant axon of the cockroach.J Physiol (Paris). 1984;79(4):309-17. J Physiol (Paris). 1984. PMID: 6152295
-
Pharmacological induction of rhythmical activity and plateau action potentials in unmyelinated axons.J Physiol Paris. 1995;89(4-6):171-80. doi: 10.1016/0928-4257(96)83634-5. J Physiol Paris. 1995. PMID: 8861816
-
Actions of sea anemone type 1 neurotoxins on voltage-gated sodium channel isoforms.Toxicon. 2009 Dec 15;54(8):1102-11. doi: 10.1016/j.toxicon.2009.04.018. Epub 2009 Apr 23. Toxicon. 2009. PMID: 19393679 Review.
Cited by
-
New Sea Anemone Toxin RTX-VI Selectively Modulates Voltage-Gated Sodium Channels.Dokl Biochem Biophys. 2020 Nov;495(1):292-295. doi: 10.1134/S1607672920060071. Epub 2020 Dec 25. Dokl Biochem Biophys. 2020. PMID: 33368037
-
Site-3 toxins and cardiac sodium channels.Toxicon. 2007 Feb;49(2):181-93. doi: 10.1016/j.toxicon.2006.09.017. Epub 2006 Sep 27. Toxicon. 2007. PMID: 17092528 Free PMC article. Review.
-
Sea anemone venom as a source of insecticidal peptides acting on voltage-gated Na+ channels.Toxicon. 2007 Mar 15;49(4):550-60. doi: 10.1016/j.toxicon.2006.11.029. Epub 2006 Dec 5. Toxicon. 2007. PMID: 17224168 Free PMC article. Review.
-
Sea anemone toxins affecting voltage-gated sodium channels--molecular and evolutionary features.Toxicon. 2009 Dec 15;54(8):1089-101. doi: 10.1016/j.toxicon.2009.02.028. Epub 2009 Mar 5. Toxicon. 2009. PMID: 19268682 Free PMC article. Review.
-
CgNa, a type I toxin from the giant Caribbean sea anemone Condylactis gigantea shows structural similarities to both type I and II toxins, as well as distinctive structural and functional properties(1).Biochem J. 2007 Aug 15;406(1):67-76. doi: 10.1042/BJ20070130. Biochem J. 2007. PMID: 17506725 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Other Literature Sources