Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Nov:457:407-30.
doi: 10.1113/jphysiol.1992.sp019385.

Presynaptic histamine H1 and H3 receptors modulate sympathetic ganglionic synaptic transmission in the guinea-pig

Affiliations

Presynaptic histamine H1 and H3 receptors modulate sympathetic ganglionic synaptic transmission in the guinea-pig

E P Christian et al. J Physiol. 1992 Nov.

Abstract

1. To study the effects of histamine on the efficacy of sympathetic ganglionic synaptic transmission, extracellular recordings of the postganglionic compound action potential (CAP) and intracellular recordings of excitatory postsynaptic potentials (EPSPs) elicited by preganglionic electrical stimulation were obtained from isolated guinea-pig superior cervical ganglia (SCG). 2. In different preparations, superfusion with histamine (0.1-100 microM) either potentiated or depressed the postganglionic CAP elicited by electrical stimulation of the cervical sympathetic trunk (0.2-3.0 Hz). The direction of response produced by histamine did not depend on stimulation frequency or histamine concentration; potentiation and depression both showed concentration dependence over the range of histamine concentrations tested. 3. Experiments employing a variety of histamine receptor agonists or antagonists revealed that histamine-induced potentiation of the postganglionic CAP could be attributed to histamine H1 receptor activation, and depression to H3 receptor activation. 4. Histamine similarly potentiated or depressed the intracellularly recorded EPSP. However, these opposite effects occurred at different synapses. In agreement with the studies on the postganglionic CAP, histamine H1 antagonists prevented histamine-induced potentiation of the EPSP and H3 receptor antagonists prevented histamine-induced depression. 5. Direct quantal analyses of histamine-induced synaptic potentiation and depression were implemented to determine the pre- and postsynaptic components of these effects. Quantal size was estimated by measuring the amplitude of spontaneous miniature EPSP amplitudes. Histamine-induced potentiation and depression of the evoked EPSP were found to be accompanied by increased or decreased quantal content respectively, and unchanged quantal size, providing evidence that presynaptic mechanisms were involved in mediating both effects. 6. Some guinea-pigs were actively sensitized to ovalbumin. Subsequent exposure of the isolated SCG from these animals to the sensitizing antigen produced changes in the EPSP amplitude that correlated significantly to the response produced by exogenously applied histamine at the same synapse. 7. The correspondence between the effects of specific antigen challenge and exogenous histamine on evoked EPSPs at a synapse provides evidence that endogenous histamine released during an immunological response to antigen challenge can activate histamine H1 and H3 receptors to modulate synaptic efficacy in sympathetic ganglia.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Physiol. 1976 Jun;257(3):597-620 - PubMed
    1. J Physiol. 1957 Jan 23;135(1):66-72 - PubMed
    1. J Auton Nerv Syst. 1990 Apr;30(1):75-87 - PubMed
    1. Eur J Pharmacol. 1985 Oct 29;117(1):109-14 - PubMed
    1. Br J Pharmacol. 1989 May;97(1):13-5 - PubMed

Publication types

LinkOut - more resources