Comparison of binding at strychnine-sensitive (inhibitory glycine receptor) and strychnine-insensitive (N-methyl-D-aspartate receptor) glycine binding sites
- PMID: 1338650
- DOI: 10.1016/0304-3940(92)90838-x
Comparison of binding at strychnine-sensitive (inhibitory glycine receptor) and strychnine-insensitive (N-methyl-D-aspartate receptor) glycine binding sites
Abstract
We compared, for a number of ligands to the two receptors, the displacement of [3H]strychnine binding to the glycine-gated chloride channel of spinal cord and brainstem synaptic membranes to the displacement of [3H]glycine binding to the NMDA receptor complex of hippocampal and cortex synaptic membranes. Glycine and beta-alanine are recognized by both receptors. In the NMDA receptor glycine antagonists, the kynurenic acids, most of the quinoxalinediones, and the (R)-enantiomer of HA-966 had little affinity at the strychnine-sensitive site. Surprisingly, the quinoxalinedione widely used as an AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor antagonist, NBQX (2,3-dihydro-6-nitro-sulfamoylbenzo[f]quinoxaline-2,3-dione) displaced [3H]strychnine binding (IC50 = 11 microM) and to a lesser extent [3H]glycine binding (IC50 = 119 microM). Of the compounds tested, only strychnine, brucine, taurine and (S)-HA-966 were more potent displacers of [3H]strychnine than of glycine binding. Generally, the two glycine recognition sites appear to have remarkably different structural requirements.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
