Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Oct 28:660:57-63.
doi: 10.1111/j.1749-6632.1992.tb21057.x.

Modulation of c-myc transcription by triple helix formation

Affiliations

Modulation of c-myc transcription by triple helix formation

E H Postel. Ann N Y Acad Sci. .

Abstract

The human c-myc oncogene promoter was used as a model with which to study the mechanism of action of oligodeoxyribonucleotides targeted to a gene regulatory region. The nuclease-hypersensitive element, NHE, lying -115 bp from the P1 promoter of the human c-myc gene, is known to be required in cis for transcription of the gene from both P1 and P2 promoters (Fig. 1). Inhibition of c-myc transcription by an oligonucleotide designed to bind to NHE by triplex formation has been observed in a cell-free transcription assay. Using a reconstituted transcription system with the semipurified PuF transcription factor whose site of interaction resides within the NHE, it is shown here that the oligonucleotide inhibits PuF-mediated transcription. These findings, together with data presented elsewhere showing that: (1) PU1 binds to cloned DNA fragments to form a colinear triplex; (2) PU1 inhibits transcription in nuclear extracts; (3) triple helix formation inhibits the binding of PuF to its target NHE element in an in vitro binding competition assay (E. Postel, R. Durland, and M. Hogan, submitted); (4) triplex formation at the NHE target site can occur in living HeLa cells treated with the triplex-forming PU1 oligomer, and (5) c-myc mRNA synthesis in these treated cells is repressed, clearly support the proposed model in which the oligonucleotide targeted against the c-myc NHE promoter region binds to form a triplex, thereby blocking access to the regulatory protein PuF. This results in promoter-sensitive repression of transcriptional activation of the c-myc gene. The potential for manipulation of gene expression by oligonucleotides targeted to a DNA sequence of the c-myc oncogene promoter and other gene promoters is clear.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources