Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992:(42):107-21.

[The role of enkephalinase (neutral endopeptidase) in neurogenic inflammation of the respiratory tract]

[Article in Serbian]
  • PMID: 1340478
Review

[The role of enkephalinase (neutral endopeptidase) in neurogenic inflammation of the respiratory tract]

[Article in Serbian]
T D Djokić. Glas Srp Akad Nauka Med. 1992.

Abstract

In addition to the cholinergic and adrenergic nervous systems, a new noncholinergic and nonadrenergic nervous system has recently been described, involving the afferent sensory nerves in the airways. Many irritants (dusts, chemicals) stimulate these sensory nerves to release neuropeptides. Among these neuropeptides, the "tachykinins" exist in sensory nerves of airways (substance P, neurokinin A). These tachykinins have the ability to affect multiple cells in the airways and to provoke many responses including smooth muscle contraction, mucus secretion, plasma extravasation and neutrophil adhesion. This series of effects is termed "neurogenic inflammation". Using the respiratory tract as experimental model, it has been shown that: a) substance P (SP) is widely distributed in afferent fibers in the vagus, b) SP-immunoreactivity has been demonstrated in the epithelium, in airway smooth muscle, near blood vessels and submucosal glands, c) substance P and other tachykinins are released from sensory nerve terminals during stimulation electrically and by capsaicin, d) local administration of substance P mimics the effect of sensory nerve stimulation, e) smooth muscle contraction, gland secretion and plasma leakage, normally induced by nerve stimulation or noxious stimulus, are absent in tissues pretreated with the substance P depleting agent capsaicin or with tachykinin antagonists. These findings indicate that peptidergic nerve fibers are involved in the local regulation of tone of smooth muscle, regulation of blood flow, vascular permeability, and mucus secretion. We released that degradative mechanisms could play an important role in modulating tachykinin effects, just as acetylcholinesterase modulates effects of acetylcholine released from nerve terminals. We discovered that a membrane-bound enzyme called enkephalinase (also called neutral endopeptidase, EC 3, 4, 24, 11), located on specific cells that contain tachykinin receptors, modulate the action of tachykinins by cleaving and thus inactivating them. Our studies demonstrate that viral infection or cigarette smoke potentiate various effects of tachykinins by decreasing tissue enkephalinase activity. Thus, down-regulation of enkephalinase activity in specific tissues can modify the extent of neurogenic inflammation, and this modification could be important in the pathogenesis of diseases in airways and other tissues that contain tachykinins.

PubMed Disclaimer

Similar articles

MeSH terms