Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Apr 15;283 ( Pt 2)(Pt 2):333-9.
doi: 10.1042/bj2830333.

Serum lipids, hepatic glycerolipid metabolism and peroxisomal fatty acid oxidation in rats fed omega-3 and omega-6 fatty acids

Affiliations

Serum lipids, hepatic glycerolipid metabolism and peroxisomal fatty acid oxidation in rats fed omega-3 and omega-6 fatty acids

A C Rustan et al. Biochem J. .

Abstract

Rats were fed, for 3 weeks, high-fat (20% w/w) diets containing sunflower-seed oil, linseed oil or fish oil. Chow-fed rats were used as a low-fat reference. The high-fat diets markedly reduced non-fasting-rat serum triacylglycerol as compared with the low-fat reference, and the highest reduction (85%) was observed with the fish-oil group, which was significantly lower than that of the other high-fat diets. The serum concentration of phospholipids was significantly reduced (30%) only in the fish-oil-fed animals, whereas serum non-esterified fatty acids were reduced 40-50% by both the fish-oil- and linseed-oil-fed groups. The liver content of triacylglycerol showed a 1.7-fold increase with the fish-oil diet and 2-2.5-fold with the other dietary groups when compared with rats fed a low-fat diet, whereas the hepatic content of phospholipids was unchanged. Peroxisomal fatty acid oxidation (acyl-CoA oxidase) was 2-fold increased for the rats fed fish oil; however this was not significantly higher when comparison was made with rats fed the linseed-oil diet. There was no difference in phosphatidate hydrolysis (microsomal and cytosolic fractions) among animals fed the various diets. Acyl-CoA:diacylglycerol acyltransferase activity was increased by all high-fat diets, but the fish-oil-diet-fed group showed a significantly lower enzyme activity than did rats fed the other high-fat diets. A linear correlation between acyl-CoA:diacylglycerol acyltransferase activity and liver triacylglycerol was observed, and the microsomal enzyme activity was decreased 40-50% by incubation in the presence of eicosapentaenoyl-CoA. CoA derivatives of arachidonic, linolenic and linoleic acid had no inhibitory effect when compared with the control. These results indicate that dietary fish oil may have greater triacylglycerol-lowering effect than other polyunsaturated diets, owing to decreased triacylglycerol synthesis caused by inhibition of acyl-CoA:diacylglycerol acyltransferase. In addition, increased peroxisomal fatty acid oxidation and decreased availability of non-esterified fatty acids could also contribute by decreasing the amounts of fatty acids as substrates for triacylglycerol synthesis and secretion.

PubMed Disclaimer

References

    1. Atherosclerosis. 1990 Aug;83(2-3):167-75 - PubMed
    1. Lipids. 1990 Dec;25(12):811-4 - PubMed
    1. J Lipid Res. 1989 Jun;30(6):785-807 - PubMed
    1. Biochim Biophys Acta. 1987 Nov 21;922(2):239-43 - PubMed
    1. J Biol Chem. 1988 Jun 15;263(17):8126-32 - PubMed

Publication types

MeSH terms