Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Apr 10;47(2):143-9.
doi: 10.1016/s0166-4328(05)80120-2.

Analgesia induced by electroacupuncture of different frequencies is mediated by different types of opioid receptors: another cross-tolerance study

Affiliations

Analgesia induced by electroacupuncture of different frequencies is mediated by different types of opioid receptors: another cross-tolerance study

X H Chen et al. Behav Brain Res. .

Abstract

The cross-tolerance technique was used to analyze the receptor mechanisms of analgesia induced by electroacupuncture (EA) of 2 Hz, 100 Hz, or 2-15 Hz. (1) Rats were given EA stimulation of 2 Hz, 100 Hz and 2-15 Hz for 30 min with 30 min intervals successively. The percentage increase in tail-flick latency (TFL) was taken to indicate the intensity of EA analgesia. Rats made tolerant to repeated intrathecal injection of the mu-opioid agonist ohmefentanyl (OMF, 15 pmol, Q2h x 5) or the delta-opioid agonist DPDPE (10 nmol, Q2h x 5) showed a cross tolerance to both 2 Hz- and 2-15 Hz-, but not to 100 Hz-EA analgesia; and rats made tolerant to kappa-opioid agonist dynorphin-(1-13) (5 nmol, Q2h x 5) showed a cross-tolerance to 100 Hz- and 2-15 Hz-, but not to 2 Hz-EA analgesia; (2) Rats made tolerant to 2-15 Hz EA showed cross-tolerance to either 2 Hz- or 100 Hz-EA analgesia; (3) Rats made tolerant to either 2 Hz- or 100 Hz-EA were still reactive to 2-15 Hz-EA. The results indicate that 2 Hz-EA analgesia is mediated by mu- and delta-receptors, 100 Hz-EA analgesia by kappa-receptor, and 2-15 Hz-EA analgesia by combined action of mu-, delta- and kappa-receptors in the spinal cord of the rats.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources