Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Apr;72(4):1480-7.
doi: 10.1152/jappl.1992.72.4.1480.

Role of glutamate as the central neurotransmitter in the hypoxic ventilatory response

Affiliations

Role of glutamate as the central neurotransmitter in the hypoxic ventilatory response

R C Ang et al. J Appl Physiol (1985). 1992 Apr.

Abstract

Recent data suggest that the increase in ventilation during hypoxia may be related to the release of the excitatory amino acid neurotransmitter glutamate centrally. To further investigate this, we studied the effects of MK-801, a selective noncompetitive N-methyl-D-aspartate receptor antagonist, on the hypoxic ventilatory response in lightly anesthetized spontaneously breathing intact dogs. The cardiopulmonary effects of sequential ventriculocisternal perfusion (VCP) at the rate of 1 ml/min with mock cerebrospinal fluid (CSF, control) and MK-801 (2 mM) were compared during normoxia and 8 min of hypoxic challenge with 12% O2. Minute ventilation (VE), tidal volume (VT), and respiratory frequency (f) were recorded continuously, and hemodynamic parameters [heart rate (HR), blood pressure (MAP), cardiac output (CO), pulmonary arterial pressure, and pulmonary capillary wedge pressure] were measured periodically. Each dog served as its own baseline control before and after each period of sequential VCP under the two different O2 conditions. During 15 min of normoxia, there were no significant changes in the cardiopulmonary parameters with mock CSF VCP, whereas with MK-801 VCP for 15 min, VE decreased by approximately 27%, both by reductions in VT and f (17 and 9.5%, respectively). HR, MAP, and CO were unchanged. During 8 min of hypoxia with mock CSF VCP, VE increased by 171% associated with increased VT and f (25 and 125%, respectively). HR, MAP, and CO were likewise augmented. In contrast, the hypoxic response during MK-801 VCP was characterized by an increased VE of 84%, mainly by a rise in f by 83%, whereas the VT response was abolished. The cardiovascular excitation was also inhibited.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources