Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep;54(5):875-94.
doi: 10.1007/BF02459934.

Neurotransmitter release: facilitation and three-dimensional diffusion of intracellular calcium

Affiliations

Neurotransmitter release: facilitation and three-dimensional diffusion of intracellular calcium

G Hovav et al. Bull Math Biol. 1992 Sep.

Abstract

In order to account for the time courses of both evoked release and facilitation, in the framework of the Ca2+ hypothesis, Fogelson and Zucker (1985, Biophys. J. 48, 1003-1017) suggested treating diffusion of Ca2+, once it enters through the Ca2+ channels, as a three-dimensional process (three-dimensional diffusion model). This model is examined here as a refined version of the "Ca(2+)-theory" for neurotransmitter release. The three-dimensional model was suggested to account for both the time course of release and that of facilitation. As such, it has been examined here as to its ability to predict the dependence of the amplitude and time course of facilitation under various experimental conditions. It is demonstrated that the three-dimensional diffusion model predicts the time course of facilitation to be insensitive to temperature. It also predicts the amplitude and time course of facilitation to be independent of extracellular Ca2+ concentration. Moreover, it predicts that inhibition of the [Na+]o in equilibrium with [Ca2+]i exchange does not alter facilitation. These predictions are not upheld by the experimental results. Facilitation is prolonged upon reduction in temperature. The amplitude of facilitation declines and its duration is prolonged upon increase in extracellular Ca2+ concentration. Finally, inhibition of the [Na+]o in equilibrium with [Ca2+]i exchange prolongs facilitation but does not alter the time course of evoked release after an impulse.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Physiol. 1957 Sep 30;138(2):253-81 - PubMed
    1. J Physiol. 1985 Oct;367:163-81 - PubMed
    1. J Physiol. 1968 Mar;195(2):471-80 - PubMed
    1. J Theor Biol. 1989 Jan 23;136(2):151-70 - PubMed
    1. Pflugers Arch. 1982 May;393(3):232-6 - PubMed

Publication types

LinkOut - more resources