Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Mar;44(3):250-4.
doi: 10.1111/j.2042-7158.1992.tb03592.x.

Anorectic activity of fluoxetine and norfluoxetine in rats: relationship between brain concentrations and in-vitro potencies on monoaminergic mechanisms

Affiliations

Anorectic activity of fluoxetine and norfluoxetine in rats: relationship between brain concentrations and in-vitro potencies on monoaminergic mechanisms

S Caccia et al. J Pharm Pharmacol. 1992 Mar.

Abstract

The present study was aimed at establishing the importance of brain monoamine uptake and release mechanisms in the anorectic activity of fluoxetine, relating them to the actual brain concentrations of the parent drug and its metabolite norfluoxetine after anorectic doses in rats. Both compounds showed anorectic activity when administered intraperitoneally, norfluoxetine being slightly more active (ED50 = 22.9 mumol kg-1) than fluoxetine (ED50 = 35.0 mumol kg-1) despite the fact that the metabolite is about ten times less potent than the parent drug in inhibiting 5-hydroxytryptamine (5-HT) uptake. Comparing the brain concentrations of norfluoxetine, in terms of maximum concentrations (Cmax) and area under the curve (AUC), after the ED50 of fluoxetine or synthetic norfluoxetine, it also appeared that the metabolite plays a major role in the anorectic effect of the parent drug in rats. Brain Cmax of fluoxetine (48.7 microM) and norfluoxetine (21.7 and 27.3 microM after metabolite and drug, respectively) were several times those blocking 5-HT uptake in-vitro (0.5 microM), making it unlikely that fluoxetine (directly or through its metabolite) reduces food intake by specifically blocking 5-HT neuronal uptake. Brain Cmax of fluoxetine but particularly norfluoxetine were more compatible with those capable in-vitro of affecting catecholaminergic mechanisms, such as inhibition of dopamine and noradrenaline uptake and enhancement of dopamine release. These results together with recent in-vitro findings that the parent compound and its active metabolite induce tritium release from hippocampal synaptosomes previously loaded with [3H]5-HT suggest that mechanisms other than inhibition of 5-HT uptake are involved in the anorectic action of these compounds in rats.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources