Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992:36:135-62.
doi: 10.1007/978-3-7091-9211-5_7.

NE/DA interactions in prefrontal cortex and their possible roles as neuromodulators in schizophrenia

Affiliations
Review

NE/DA interactions in prefrontal cortex and their possible roles as neuromodulators in schizophrenia

J P Tassin. J Neural Transm Suppl. 1992.

Abstract

The monoaminergic innervation of the rat prefrontal cortex arises from well-defined mesencephalic nuclei, with noradrenergic (NE) neurons located in the locus coeruleus, dopaminergic (DA) neurons located in the ventral tegmental area, and serotonergic (5-HT) neurons originating in the raphe nuclei. Specific destruction of the NE bundle was found to induce morphological (i.e., sprouting) as well as metabolic (i.e., changes in rate of DA utilization) modifications of mesocortical DA neurons, suggesting that these two catecholaminergic systems have functional interactions within the prefrontal cortex. This was substantiated by experiments showing that DA afferents modulate the sensitivity of cortical post-synaptic beta-adrenergic receptors and that, reciprocally, NE neurons control the sensitivity of cortical D1 receptors. Behavioural and pharmacological data have further indicated that the stimulation of cortical alpha-1 adrenergic receptors inhibits cortical DA transmission at D1 receptors. Secondly, we have attempted to analyze how such interactions between neuromodulatory systems may be related to the development of mental diseases such as schizophrenia. On the basis of studies in the literature describing the effects produced by the ingestion of hallucinogenic drugs or data collected regarding REM sleep, it is postulated that two modes of brain functioning exist: analogical and cognitive. Each mode is characterized by differences in the relative activities of NE, DA and 5-HT neurons. At birth, during REM sleep, and following the ingestion of hallucinogens, the mode of brain functioning is essentially analogical; in contrast, both analogic and cognitive modes are postulated to coexist in the awake state. Oscillations between these two modes are under the control of monoaminergic systems on which an increase in cortical DA release favours the cognitive processing mode, whereas intermittent activations of NE neurons would switch the brain into the analogical mode of processing. It is proposed that schizophrenic patients with "positive" symptoms suffer from an abnormal preponderance of the analogical mode while awake, whereas "negative" symptoms are due to the excessive presence of the cognitive mode. Although pure biological deficits cannot be excluded, these dysfunctions could be related to the absence of particular environmental variables early in the development of these patients. This condition is probably required to establish normal regulatory control of monoaminergic neuronal activity.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources