Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Oct 25;267(30):21338-43.

Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action

Affiliations
  • PMID: 1356988
Free article

Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action

H T McMahon et al. J Biol Chem. .
Free article

Abstract

Tetanus toxin (100 nM) when preincubated with guinea pig cerebrocortical synaptosomes for 45 min reduces the final extent of the KCl-evoked, Ca(2+)-dependent, glutamate transmitter release to 30% of non-intoxicated controls. Similarly, 100 nM Botulinum neurotoxins, types A and B, preincubated for 90 min inhibit release to 45-60% of non-intoxicated controls. The toxins preferentially attenuate a slow phase of KCl-evoked glutamate release which may be associated with synaptic vesicle mobilization. Tetanus toxin additionally inhibits the release of aspartate, gamma-aminobutyric acid and met-enkephalin from the same preparation. Since amino acids and neuropeptides are released by distinct mechanisms, this indicates that the toxin affects a step common to both exocytotic pathways. When Ba2+ (which does not interact with calmodulin) is substituted for Ca2+, the control KCl-evoked release of each transmitter is unaffected and tetanus toxin is still inhibitory. Taken together these results implicate a calmodulin-independent locus (or loci) of action common to small- and large-dense-core vesicles and associated with vesicle transport.

PubMed Disclaimer

Publication types

LinkOut - more resources