Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Oct;62(4):417-25.
doi: 10.1080/09553009214552301.

Synergistic effect of aphidicolin and 1-beta-D-arabinofuranosylcytosine on the repair of gamma-ray-induced DNA damage in normal human fibroblasts

Affiliations

Synergistic effect of aphidicolin and 1-beta-D-arabinofuranosylcytosine on the repair of gamma-ray-induced DNA damage in normal human fibroblasts

R Mirzayans et al. Int J Radiat Biol. 1992 Oct.

Abstract

The effects on enzymatic DNA repair of aphidicolin and 1-beta-D-arabinofuranosylcytosine (araC), two potent inhibitors of long-patch excision repair, were investigated in cultured human cells exposed to 60Co gamma-radiation. Using alkaline-sucrose velocity sedimentation analysis, both drugs were shown to inhibit markedly the repair of radioproducts in cultures exposed to greater than or equal to 150 Gy, indicating that a significant component of gamma-ray-induced DNA damage is operated on by a long-patch excision pathway. Moreover, while the extent of repair inhibited by aphidicolin was comparable to that suppressed by araC, combined exposure of irradiated cultures to the two drugs elicited a synergistic response. Specifically, in all three normal fibroblast strains examined, the yield of aphidicolin- or araC-detectable sites (lesions whose repair could be blocked by each drug alone) observed during the first 2 h after irradiation with 150 Gy ranged from 0.8 to 1.2 per 10(8) daltons genomic DNA, whereas the incidence of sites detected by combined exposure to the inhibitors was increased 4-fold (i.e. 3.8 per 10(8) daltons). This difference in site yield leads us to propose that simultaneous administration of aphidicolin and araC serves to block, in addition to long-patch repair, a second mode of excision repair which is refractory to each drug alone.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources