5-(N-ethyl-N-isopropyl)amiloride and mild acidosis protect cultured cerebellar granule cells against glutamate-induced delayed neuronal death
- PMID: 1357585
- DOI: 10.1016/0306-4522(92)90085-g
5-(N-ethyl-N-isopropyl)amiloride and mild acidosis protect cultured cerebellar granule cells against glutamate-induced delayed neuronal death
Abstract
In the experiments on the primary cerebellar granule cell cultures, delayed neuronal death was induced by 15 min treatment of the cells with 50 microM glutamate. 5-(N-ethyl-N-isopropyl)amiloride (10 microM) known as a potent inhibitor of the Na+/H+ exchanger, when added to the glutamate-containing Mg(2+)-free solution caused a considerable (approximately by 40%) decrease in the number of dead cells counted 4 h after the termination of glutamate treatment. Patch-clamp experiments with freshly isolated rat hippocampal neurons have shown that the neuroprotective effect of 5-(N-ethyl-N-isopropyl)amiloride can be explained by its ability to block N-methyl-D-aspartate channels (receptors) at micromolar concentrations. A similar mechanism apparently underlies neuroprotective effect of external acidosis (reduction of pH from 7.6-7.8 to 6.7-6.8) during glutamate application. 5-(N-ethyl-N-isopropyl)amiloride (10 microM) and low pH (6.7) also proved capable of exhibiting neuroprotective effects upon application during the post-glutamate period. In this instance, however, the number of dead cells was decreased by no more than 20%. This neuroprotective effect of 5-(N-ethyl-N-isopropyl)amiloride and low pH is interpreted as resulting from inhibition of Na+/H+ exchange, since a direct blockade of N-methyl-D-aspartate receptors by 1 mM DL-2-amino-5-phosphonovalerate after termination of glutamate treatment did not attenuate the delayed neuronal death. Finally, we have established that the addition of 10 microM 5-(N-ethyl-N-isopropyl)amiloride to the cultures both during glutamate treatment and after its termination results in a complete protection of cultured cerebellar granule cells.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
