Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep;50(1):107-15.
doi: 10.1016/0306-4522(92)90385-f.

Sulphur-containing excitatory amino acid-evoked Ca(2+)-independent release of D-[3H]aspartate from cultured cerebellar granule cells: the role of glutamate receptor activation coupled to reversal of the acidic amino acid plasma membrane carrier

Affiliations

Sulphur-containing excitatory amino acid-evoked Ca(2+)-independent release of D-[3H]aspartate from cultured cerebellar granule cells: the role of glutamate receptor activation coupled to reversal of the acidic amino acid plasma membrane carrier

J Dunlop et al. Neuroscience. 1992 Sep.

Abstract

Sulphur-containing excitatory amino acid transmitter candidates (500 microM) stimulated the Ca(2+)-independent efflux of exogenously-supplied D-[3H]aspartate from primary cultures of cerebellar granule cells superfused continuously with HEPES-buffered saline containing CoCl2 (1 mM) in place of CaCl2. The stimulated release of D-[3H]aspartate was markedly attenuated by 200 microM 6,7-dinitroquinoxalinedione, a concentration at which the antagonist inhibits both non-N-methyl-D-aspartate and N-methyl-D-aspartate ionotropic excitatory amino acid receptors. The Ca(2+)-independent component of evoked release was also markedly attenuated and, in some cases, abolished by removing NaCl from the superfusion medium. Furthermore, when 700 microM dihydrokainate (demonstrated herein as a mixed/non-competitive inhibitor of the high-affinity dicarboxylic amino acid transporter in cultured granule cells) was included in the superfusion medium, stimulated efflux of D-[3H]aspartate was reduced by between 15-78% of the control response; the extent of inhibition varying with the agonist employed. In constrast, agents which act as competitive inhibitors of the plasma membrane carrier in granule cells, e.g. beta-methylene-D,L-aspartate, potentiated the release of D-[3H]aspartate in a synergistic manner. Taken together, these findings are consistent with a mechanism for the Ca(2+)-independent release of D-[3H]aspartate that is mediated predominantly by activation of excitatory amino acid receptors resulting in a reversal of the high-affinity dicarboxylic amino acid transport system. Although the physiological relevance of such non-vesicular release from the cytosol remains obscure and is still a matter of some debate, this mode of release may be of pathological significance.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources