The thermal stability of rhodopsin and opsin
- PMID: 13587911
- PMCID: PMC2194909
- DOI: 10.1085/jgp.42.2.259
The thermal stability of rhodopsin and opsin
Abstract
Rhodopsin, the red photosensitive pigment of rod vision, is composed of a specific cis isomer of retinene, neo-b (11-cis), joined as chromophore to a colorless protein, opsin. We have investigated the thermal denaturation of cattle rhodopsin and opsin in aqueous digitonin solution, and in isolated rod outer limbs. Both rhodopsin and opsin are more stable in rods than in solution. In solution as well as in rods, moreover, rhodopsin is considerably more stable than opsin. The chromophore therefore protects opsin against denaturation. This is true whether rhodopsin is extracted from dark-adapted retinas, or synthesized in vitro from neo-b retinene and opsin. Excess neo-b retinene does not protect rhodopsin against denaturation. The protection involves the specific relationship between the chromophore and opsin. Similar, though somewhat less, protection is afforded opsin by the stereoisomeric iso-a (9-cis) chromophore in isorhodopsin. The Arrhenius activation energies (E(a)) and entropies of activation (DeltaSdouble dagger) are much greater for thermal denaturation of rhodopsin and isorhodopsin than of opsin. Furthermore, these values differ considerably for rhodopsins from different species -frog, squid, cattle-presumably due to species differences in the opsins. Heat or light bleaches rhodopsin by different mechanisms, yielding different products. Light stereoisomerizes the retinene chromophore; heat denatures the opsin. Photochemical bleaching therefore yields all-trans retinene and native opsin; thermal bleaching, neo-b retinene and denatured opsin.
Similar articles
-
Cis-trans isomers of vitamin A and retinene in the rhodopsin system.J Gen Physiol. 1952 Nov;36(2):269-315. doi: 10.1085/jgp.36.2.269. J Gen Physiol. 1952. PMID: 13011282 Free PMC article.
-
The rhodopsin system of the squid.J Gen Physiol. 1958 Jan 20;41(3):501-28. doi: 10.1085/jgp.41.3.501. J Gen Physiol. 1958. PMID: 13491819 Free PMC article.
-
Human rhodopsin.Science. 1958 Jan 31;127(3292):222-6. doi: 10.1126/science.127.3292.222. Science. 1958. PMID: 13495499
-
Cone visual pigments.Biochim Biophys Acta. 2014 May;1837(5):664-73. doi: 10.1016/j.bbabio.2013.08.009. Epub 2013 Sep 7. Biochim Biophys Acta. 2014. PMID: 24021171 Review.
-
Light-induced damage to the retina: role of rhodopsin chromophore revisited.Photochem Photobiol. 2005 Nov-Dec;81(6):1305-30. doi: 10.1562/2004-11-13-IR-371. Photochem Photobiol. 2005. PMID: 16120006 Review.
Cited by
-
The thermal origin of spontaneous activity in the Limulus photoreceptor.J Physiol. 1972 Jul;224(2):349-61. doi: 10.1113/jphysiol.1972.sp009899. J Physiol. 1972. PMID: 5071400 Free PMC article.
-
The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration.J Neurosci. 2009 Dec 2;29(48):15145-54. doi: 10.1523/JNEUROSCI.4259-09.2009. J Neurosci. 2009. PMID: 19955366 Free PMC article.
-
Investigation of the organization of rhodopsin in the sheep photoreceptor membrane by using cross-linking reagents.Biochem J. 1979 Jan 1;177(1):215-23. doi: 10.1042/bj1770215. Biochem J. 1979. PMID: 106845 Free PMC article.
-
Thermotropic behavior of retinal rod membranes and dispersions of extracted phospholipids.J Membr Biol. 1985;85(1):79-86. doi: 10.1007/BF01872007. J Membr Biol. 1985. PMID: 4020856
-
TAUTOMERIC FORMS OF METARHODOPSIN.J Gen Physiol. 1963 Nov;47(2):215-40. doi: 10.1085/jgp.47.2.215. J Gen Physiol. 1963. PMID: 14080814 Free PMC article.