Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Nov 5;267(31):22616-23.

A retinoic acid-inducible mRNA from human erythroleukemia cells encodes a novel tissue transglutaminase homologue

Affiliations
  • PMID: 1358880
Free article
Comparative Study

A retinoic acid-inducible mRNA from human erythroleukemia cells encodes a novel tissue transglutaminase homologue

B M Fraij et al. J Biol Chem. .
Free article

Erratum in

  • J Biol Chem 1993 Apr 25;268(12):9156

Abstract

A 1.9-kilobase (kb) cDNA for a new transglutaminase protein has been cloned and sequenced from retinoic acid-induced human erythroleukemia (HEL) cells. Full-length cDNA analysis reveals an open reading frame coding for a polypeptide of 548 amino acid residues with a molecular weight of 61,740. The deduced amino acid sequence exhibited 98% identity to the human cellular transglutaminase sequence. The cysteine at position 277 in the active site and the putative Ca(2+)-binding pocket at residues 446-453 of cellular transglutaminase are conserved. Such evidence predicts that the encoded protein product is likely to be a transglutaminase homologue (TGase-H). Immunoprecipitation of the in vitro translation products from a synthetic TGase-H mRNA and from total protein of cultured erythroleukemia HEL cells revealed a protein with a molecular weight of 63,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Northern blot analysis of HEL cells and normal human fibroblast cells WI-38 using a cellular TGase probe detected the 1.9- and 4.0-kb RNA species at a relative abundance of 1:3 and 1:7, respectively. The 3'-end of the human cellular transglutaminase mRNA was also cloned and sequenced to allow comparison to the 3'-end of TGase-H reported here. This new piece gives a full length of 4012 nucleotides (4.0 kb) for human cellular transglutaminase. Comparison of the 5'-end (bases 1-1747) of the 1.9- and 4.0-kb cDNA sequences revealed a very high degree of identity. Beginning with base 1748, the sequences diverge showing no homology. The divergence point correlates with known intron-exon consensus boundaries indicative of alternative splicing.

PubMed Disclaimer

Publication types

LinkOut - more resources