Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Nov 15;288 ( Pt 1)(Pt 1):117-21.
doi: 10.1042/bj2880117.

Site-directed mutagenesis at aspartate and glutamate residues of xylanase from Bacillus pumilus

Affiliations
Comparative Study

Site-directed mutagenesis at aspartate and glutamate residues of xylanase from Bacillus pumilus

E P Ko et al. Biochem J. .

Abstract

To elucidate the reaction mechanism of xylanase, the identification of amino acids essential for its catalysis is of importance. Studies have indicated the possibility that the reaction mechanism of xylanase is similar to that of hen's egg lysozyme, which involves acidic amino acid residues. On the basis of this assumption, together with the three-dimensional structure of Bacillus pumilus xylanase and its amino acid sequence similarity to other xylanases of different origins, three acidic amino acids, namely Asp-21, Glu-93 and Glu-182, were selected for site-directed mutagenesis. The Asp residue was altered to either Ser or Glu, and the Glu residues to Ser or Asp. The purified mutant xylanases D21E, D21S, E93D, E93S, E182D and E182S showed single protein bands of about 26 kDa on SDS/PAGE. C.d. spectra of these mutant enzymes show no effect on the secondary structure of xylanase, except that of D21E, which shows a little variation. Furthermore, mutations of Glu-93 and Glu-182 resulted in a drastic decrease in the specific activity of xylanase as compared with mutation of Asp-21. On the basis of these results we propose that Glu-93 and Glu-182 are the best candidates for the essential catalytic residues of xylanase.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Adv Protein Chem. 1975;29:205-300 - PubMed
    1. Biochem J. 1990 Aug 15;270(1):91-6 - PubMed
    1. Proc Natl Acad Sci U S A. 1989 Jan;86(1):133-7 - PubMed
    1. Gene. 1985;33(1):103-19 - PubMed
    1. Protein Eng. 1987 Aug-Sep;1(4):327-32 - PubMed

Publication types