Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1959 May 20;42(5):923-30.
doi: 10.1085/jgp.42.5.923.

The control of membrane ionic currents by the membrane potential of muscle

The control of membrane ionic currents by the membrane potential of muscle

H JENERICK. J Gen Physiol. .

Abstract

Comparisons between electrotronic potentials and certain predicted curves allow the identification of the membrane potential at which the sodium and potassium currents are switched on in frog sartorius. The activation potentials (the membrane potentials at which the ionic currents are great enough to be resolved by the method) are functions of the resting potential and time but not of ionic concentration. In the normal fiber, the activation potential for sodium lies nearer the resting potential and depolarizations set off sodium currents and action potentials. Below a resting potential of 55 to 60 mv. sodium activation is lost and conduction is impossible. A tenfold increase of calcium concentration lowers (moves further from the resting potential) the sodium activation potential by 20 to 25 mv. whereas the potassium activation potential is lowered by only 15 mv. Certain consequences of this are seen in the behavior of the muscle cell when it is stimulated with long duration shock.

PubMed Disclaimer