Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 May-Jun;6(3):188-92.
doi: 10.1021/bp00003a004.

Chemical and biosynthetic approaches to the production of novel polypeptide materials

Affiliations

Chemical and biosynthetic approaches to the production of novel polypeptide materials

K P McGrath et al. Biotechnol Prog. 1990 May-Jun.

Abstract

Three approaches to the synthesis of the repetitive copolypeptide [(GlyAla)3-GlyProGlu]n (1) are described. Direct chemical synthesis of 1 via classical solution methods required 18 steps and afforded a polydisperse product with an average molecular weight of less than 10,000. Two alternative genetic strategies were also explored. In the first, chemically synthesized DNA oligomers were self-ligated to produce a population of multimers, which were fitted with translational start and stop signals and inserted into an expression plasmid containing the lambda PL promoter and a synthetic ribosome binding site. Transformation of E. coli led to the isolation of a stable recombinant plasmid carrying an insert encoding 12 repeats of sequence 1. Attempts to identify polypeptide 1 after induction of transformed cultures were unsuccessful. A second strategy, generating a tripartite derivative of sequence 1 carrying short N- and C-terminal extensions, afforded excellent yields of product. The relative merits of chemical and genetic approaches to repetitive polypeptide materials are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources