Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jul;19(2-3):271-85.
doi: 10.1016/0168-1656(91)90064-3.

The 1,4-beta-D-glucan cellobiohydrolases from Phanerochaete chrysosporium. I. A system of synergistically acting enzymes homologous to Trichoderma reesei

Affiliations

The 1,4-beta-D-glucan cellobiohydrolases from Phanerochaete chrysosporium. I. A system of synergistically acting enzymes homologous to Trichoderma reesei

E Uzcategui et al. J Biotechnol. 1991 Jul.

Abstract

A physico-chemical and structural characterization of three 1,4-beta-D-glucan cellobiohydrolases (EC. 3.2.1.91), isolated from a culture filtrate of the white-rot fungus Phanerochaete chrysosporium, reveals that the cellulolytic enzyme secretion pattern and thus the general degradation strategy for P. chrysosporium is similar to that of Trichoderma reesei. Partial sequence data show that two of the isolated enzymes, i.e., CBHI, pI 3.82 and CBH62, pI 4.85, are homologous with CBHI and EGI from T. reesei; while, the third, i.e., CBH50, pI 4.87, is homologous to T. reesei CBHII. Limited proteolysis with papain cleaved each of the three enzymes into two domains: a core protein which retained full catalytic activity against low molecular weight substrates and a peptide fragment corresponding to the cellulose binding domain, in striking similarity to the structural organization of T. reesei. CBHI and CBH62 have their binding domain located at the C-terminus, whereas in CBH50 it is located at the N-terminus. It is evident that synergistically acting cellobiohydrolases is a general requirement for efficient hydrolysis of crystalline cellulose by cellulolytic fungi.

PubMed Disclaimer

Publication types

LinkOut - more resources