Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Dec 5;278(49):49085-94.
doi: 10.1074/jbc.M307508200. Epub 2003 Sep 17.

Molecular identification and functional roles of a Ca(2+)-activated K+ channel in human and mouse hearts

Affiliations
Free article

Molecular identification and functional roles of a Ca(2+)-activated K+ channel in human and mouse hearts

Yanfang Xu et al. J Biol Chem. .
Free article

Abstract

The repolarization phase of cardiac action potential is prone to aberrant excitation that is common in cardiac patients. Here, we demonstrate that this phase is markedly sensitive to Ca2+ because of the surprising existence of a Ca2+-activated K+ currents in cardiac cells. The current was revealed using recording conditions that preserved endogenous Ca2+ buffers. The Ca2+-activated K+ current is expressed differentially in atria compared with ventricles. Because of the significant contribution of the current toward membrane repolarization in cardiac myocytes, alterations of the current magnitude precipitate abnormal action potential profiles. We confirmed the presence of a small conductance Ca2+-activated K+ channel subtype (SK2) in human and mouse cardiac myocytes using Western blot analysis and reverse transcription-polymerase chain reaction and have cloned SK2 channels from human atria, mouse atria, and ventricles. Because of the marked differential expression of SK2 channels in the heart, specific ligands for Ca2+-activated K+ currents may offer a unique therapeutic opportunity to modify atrial cells without interfering with ventricular myocytes.

PubMed Disclaimer

Publication types