Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct;15(10):1137-47.
doi: 10.1093/intimm/dxg114.

Transitional and marginal zone B cells have a high proportion of unmasked CD22: implications for BCR signaling

Affiliations

Transitional and marginal zone B cells have a high proportion of unmasked CD22: implications for BCR signaling

Claus-Peter Danzer et al. Int Immunol. 2003 Oct.

Abstract

CD22, a B cell-specific member of the Siglec family, is an important inhibitor of B cell signaling. The first Ig-like domain of CD22 specifically binds to alpha2,6-linked sialic acids. Through these interactions CD22 can mediate adhesion to other cells in trans, but can also bind endogenous ligands on the B cell surface in cis. Cis binding of CD22 to sialylated ligands enhances the efficiency of inhibition and thereby reduces the BCR signaling strength. In this study we used a newly developed oligomeric streptavidin-based sialylated probe as an artificial CD22 ligand. We found that CD22 is bound to ligands in cis on most B cells. However, there is a proportion of B cells with unbound (unmasked) CD22. The subpopulation with unmasked CD22 is 2-fold increased in transitional and marginal zone B cells in the spleen and on B1 cells in the peritoneum, when compared to mature B cells. Also, B cells with unmasked CD22 have an activated phenotype. Unmasking of CD22 could be functionally involved in lowering the signaling threshold on developmental checkpoints such as transitional B cells and during B cell activation or could be a consequence of such activation processes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources