Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1960 Oct;8(2):379-97.
doi: 10.1083/jcb.8.2.379.

The consistency of ameba cytoplasm and its bearing on the mechanism of ameboid movement. II. The effects of centrifugal acceleration observed in the centrifuge microscope

The consistency of ameba cytoplasm and its bearing on the mechanism of ameboid movement. II. The effects of centrifugal acceleration observed in the centrifuge microscope

R D ALLEN. J Biophys Biochem Cytol. 1960 Oct.

Abstract

Three species of common, free-living amebae, Amoeba proteus, Amoeba dubia, and Chaos chaos were directly observed and photographed while exposed to a range of centrifugal accelerations in two types of centrifuge microscopes. Cytoplasmic inclusions in all three species are displaced discontinuously (at a variable velocity) in apparently all parts of the cell, suggesting non-Newtonian behavior and/or heterogeneous consistency. The ectoplasm of all species shows the highest yield point of any region in the cell; the posterior ectoplasm is less rigid than that in the anterior part of the cell. The axial part of the endoplasm shows evidence of structure (a sharp viscosity transition if not a true yield point) by its: (a) resistance to the displacement of particles carried in that region of the cell, (b) hindrance to the passage through the cell of inclusions displaced from other regions, and its (c) support without visible back-slip of inclusion being resuspended in the axial endoplasm in a centripetal direction at accelerations as high as 170 g. At this acceleration, each crystal "weighs" the equivalent reduced weight of seven times its volume in gold at 1 g. The only regions of the normal, moving cell which show clear evidence of low apparent viscosity are the "shear zone" (see Fig. 8) and the "recruitment zone." Possible reasons for low apparent viscosity in these regions are discussed. A new scheme of ameba "structure" is presented on the basis of the combined results of velocity profile analysis and the present centrifugation study.

PubMed Disclaimer

References

    1. Exp Cell Res. 1959 Oct;18:385-9 - PubMed
    1. C R Trav Lab Carlsberg Chim. 1956;29(26):435-555 - PubMed
    1. J Biophys Biochem Cytol. 1960 Apr;7:227-34 - PubMed
    1. Science. 1930 Jul 11;72(1854):42-4 - PubMed
    1. Science. 1949 Jul 29;110(2848):114-5 - PubMed