Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jan;66(1):405-13.
doi: 10.1128/JVI.66.1.405-413.1992.

A glutamine residue in the membrane-associating domain of the bovine papillomavirus type 1 E5 oncoprotein mediates its binding to a transmembrane component of the vacuolar H(+)-ATPase

Affiliations

A glutamine residue in the membrane-associating domain of the bovine papillomavirus type 1 E5 oncoprotein mediates its binding to a transmembrane component of the vacuolar H(+)-ATPase

D J Goldstein et al. J Virol. 1992 Jan.

Abstract

The 44-amino-acid E5 oncoprotein is the major transforming protein of bovine papillomavirus type 1. It is a highly hydrophobic polypeptide which dimerizes and localizes to the Golgi apparatus and endoplasmic reticulum membranes. Recent evidence suggests that E5 modulates the phosphorylation and internalization of the epidermal growth factor and colony-stimulating factor 1 receptors and constitutively activates platelet-derived growth factor receptors in C127 and FR3T3 cells. Although no direct interaction with these growth factor receptors has yet been identified, the E5 oncoprotein has been shown recently to interact with the hydrophobic 16-kDa component of the vacuolar H(+)-ATPase (16K protein) [D. J. Goldstein, M. E. Finbow, T. Andresson, P. McLean, K. Smith, V. Bubb, and R. Schlegel, Nature (London) 352:347-349, 1991]. In the current study, we have further analyzed the E5-16K protein complex by fast protein liquid chromatography and shown that each E5 dimer appears to bind two 16K proteins. In order to define the specific amino acid residues of E5 which participate in this binding, mutated E5 epitope fusion proteins were analyzed for their ability to coprecipitate 16K protein. Transformation-defective mutants containing amino acid substitutions within the short hydrophilic carboxyl-terminal domain retained the ability to associate with the 16K protein. However, E5 mutants lacking the glutamine residue in the hydrophobic domain were markedly inhibited in 16K protein binding. Most interestingly, the placement of a glutamine in several random hydrophobic sequences facilitated 16K protein binding, defining this residue as a potential binding site for the 16K protein component of the proton pump and exemplifying the critical role of hydrophilic amino acids for mediating specific interactions between transmembrane proteins.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Virology. 1973 Apr;52(2):456-67 - PubMed
    1. J Biol Chem. 1983 Sep 10;258(17):10403-10 - PubMed
    1. Rev Physiol Biochem Pharmacol. 1984;99:111-81 - PubMed
    1. EMBO J. 1984 Oct;3(10):2271-8 - PubMed
    1. Nature. 1991 Jul 25;352(6333):347-9 - PubMed

Publication types