Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jan 1;148(1):218-24.

Epitopes on the outer surface protein A of Borrelia burgdorferi recognized by antibodies and T cells of patients with Lyme disease

Affiliations
  • PMID: 1370170

Epitopes on the outer surface protein A of Borrelia burgdorferi recognized by antibodies and T cells of patients with Lyme disease

M C Shanafelt et al. J Immunol. .

Abstract

We have characterized immunogenic epitopes of the 31-kDa outer surface protein A (OspA) protein of Borrelia burgdorferi, which is a major surface Ag of the spirochete causing Lyme disease. Full length and truncated forms of rOspA proteins were expressed in Escherichia coli, and their reactivities with antibodies and human T cell clones isolated from patients with Lyme disease were determined. The epitopes recognized by three of four OspA-reactive T cell clones are contained within the 60 COOH-terminal amino acids. Each of the four OspA-reactive T cell clones has a different HLA class II molecule involved in Ag recognition and recognizes a distinct epitope. One T cell clone promiscuously recognized an epitope in the context of different HLA-DQ molecules. In addition, the binding of a murine monoclonal anti-OspA antibody, as well as antibodies in sera of three of five patients with Lyme disease, was dependent upon the amino acids in the carboxy-terminal protion of this protein. Taken together, our results indicate that the 60 COOH-terminal amino acids of OspA contain epitopes recognized by human antibodies and T cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms