Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Feb 15;267(5):3473-81.

Structural and functional characterization of an inositol polyphosphate receptor from cerebellum

Affiliations
  • PMID: 1371119
Free article

Structural and functional characterization of an inositol polyphosphate receptor from cerebellum

C C Chadwick et al. J Biol Chem. .
Free article

Abstract

An inositol polyphosphate receptor has been purified from bovine cerebellum which consists of three different polypeptides with Mr of 111,000, 102,000, and 52,000. Negative staining electron microscopy reveals globular-like structures 10-13 nm in diameter. The receptor has a Stokes radius of 400,000 daltons as determined by molecular sieve high performance liquid chromatography. The receptor preparation binds inositol 1,3,4,5-tetrakisphosphate, inositol hexaphosphate (or phytol), and inositol 1,4,5-trisphosphate (IP4, IP6, and IP3, respectively) with submicromolar affinity (0.19, 0.15, and 0.54 microM, respectively) at conditions approximating physiological ionic strength and pH. The purified receptor preparation, when reconstituted into planar bilayers, displays ion channel activity, preferentially permeable to K+. Permeability ratios of the channel are PK+/PNa+ approximately 5 and PK+/PCl approximately 19. In symmetrical 100 mM KCl, the channel is characterized by long open times (minutes) with a conductance of 7.2 picosiemens. The channel is selectively modulated by IP4. That is, at 1 microM IP4, the mean open time decreased substantially to rapid flicker behavior and the channel is completely closed at 10 microM IP4. IP6 and IP3 did not modulate the channel under similar conditions. Thus, the channel appears to be an IP4-modulated K+ channel.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources