Direct measurement of L-type Ca2+ window current in heart cells
- PMID: 1371428
- DOI: 10.1161/01.res.70.3.445
Direct measurement of L-type Ca2+ window current in heart cells
Abstract
The activation and inactivation relations of several ion channel currents overlap, suggesting the existence of a steady-state or "window" current. We studied L-type Ca2+ channel window current in single cardiac Purkinje cells using a voltage-clamp protocol by which channels were first inactivated nearly completely during a long-duration depolarizing step, and then the recovery of Ca2+ current was observed during repolarizing steps into the L-type Ca2+ window voltage range. With these conditions, a small-amplitude inward Ca2+ current gradually developed after repolarization to voltages within the window but not after steps to voltages positive or negative to it. Window current was suppressed by Cd2+ (50 microM), nifedipine (1 microM), and nicardipine (1 microM), and it was augmented by isoproterenol (5 microM) and Bay K 8644 (1 microM). At voltages at which window current developed, L-type Ca2+ channels also recovered to a closed state from which they could be reopened by an additional depolarizing step. At voltages positive to the window range, channel recovery to a closed state(s) was absent, whereas at voltages negative to the window range, channel recovery to a closed state(s) increased, as expected from the "steady-state" inactivation relation. Our results provide direct measurement of L-type Ca2+ window current and distinguish it from other processes, such as slow inactivation. Our findings support the postulate that within a window there occur channel transitions from inactivated to closed states, and these channels (re)open, and this process may occur repetitively. Some physiological and pathophysiological roles for L-type Ca2+ window current are discussed.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous