Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992 Mar;15(3):96-103.
doi: 10.1016/0166-2236(92)90019-5.

Activity-dependent neuronal plasticity following tissue injury and inflammation

Affiliations
Review

Activity-dependent neuronal plasticity following tissue injury and inflammation

R Dubner et al. Trends Neurosci. 1992 Mar.

Abstract

Increases in neuronal activity in response to tissue injury lead to changes in gene expression and prolonged changes in the nervous system. These functional changes appear to contribute to the hyperalgesia and spontaneous pain associated with tissue injury. This activity-dependent plasticity involves neuropeptides, such as dynorphin, substance P and calcitonin gene-related peptide, and excitatory amino acids, such as NMDA, which are chemical mediators involved in nociceptive processing. Unilateral inflammation in the hindpaw of the rat results in an increase in the expression of preprodynorphin and preproenkephalin mRNA in the spinal cord, which parallels the behavioral hyperalgesia associated with the inflammation. Cellular intermediate-early genes, such as c-fos, are also expressed in spinal cord neurons following inflammation and activation of nociceptors. Peripheral inflammation results in an enlargement of the receptive fields of many of these neurons. Dynorphin applied to the spinal cord also induces an enlargement of receptive fields. NMDA antagonists block the hyperexcitability produced by inflammation. A model has been proposed in which dynorphin, substance P and calcitonin gene-related peptide enhance excitability at NMDA receptor sites, leading first to dorsal horn hyperexcitability and then to excessive depolarization and excitotoxicity.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources