Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Apr 29;1106(1):197-208.
doi: 10.1016/0005-2736(92)90239-i.

Effects of intracellular signals on Na+/K(+)-ATPase pump activity in the frog skin epithelium

Affiliations

Effects of intracellular signals on Na+/K(+)-ATPase pump activity in the frog skin epithelium

J Ehrenfeld et al. Biochim Biophys Acta. .

Abstract

The effects of intracellular signals (pHi, Na+i, Ca2+i, and the electrical membrane potential), on Na+ transport mediated by the Na+/K+ pump were investigated in the isolated Rana esculenta frog skin. In particular we focussed on pHi sensitivity since protons act as an intrinsic regulator of transepithelial Na+ transport (JNa) by a simultaneous control of the apical membrane Na+ conductance (gNa) and the basolateral membrane K+ conductance (gK). pHi changes which modify JNa, gNa and gK, do not affect the Na+ transport mediated by the pump as shown by kinetic and electrophysiological studies. In addition, no changes were observed in the number of 3H-ouabain binding sites in acid-loaded epithelia. Our attempts to modify cellular Ca2+ (by using Ca(2+)-free/EGTA Ringer solution or A23187 addition) also failed to produce any significant effects in the Na+ pump turnover rate or the number of 3H-ouabain binding sites. The Na+ pump current was found to be sensitive to the basolateral membrane potential, saturating for very positive (cell) potentials and a reversal potential of -160 mV was calculated from I-V relationships of the pump. Changes in Na+i considerably affected the Na+ pump rate. A saturating relationship was found between pump rate and Nai+ with maximal activation at Nai+ greater than 40 mmol/l; a high dependence of the pump rate and of the number of 3H-ouabain binding sites was observed in the physiological range of Nai+. We conclude that protons (in the physiological pH range) which act directly and simultaneously on the passive transport pathways (gNa and gK), have no direct effect on the Na+/K+ pump rate. After an acid load, the inhibition of JNa is primarily due to the reduction of gNa. This results in a reduction of Nai and the pump turnover rate then becomes dependent on other pathways of Na+ entry such as the basolateral membrane Na+/H+ exchanger.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources