Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jun 15;185(2):531-8.
doi: 10.1016/0006-291x(92)91657-c.

Ca(2+)-dependent and Ca(2+)-independent mechanisms modulate whole-cell cationic currents in human neutrophils

Affiliations
Free article

Ca(2+)-dependent and Ca(2+)-independent mechanisms modulate whole-cell cationic currents in human neutrophils

M A Schumann et al. Biochem Biophys Res Commun. .
Free article

Abstract

We used whole-cell, voltage-clamp methodology to study the activation and inhibition of cationic currents in neutrophil. Cationic channels involved were impermeable to N-methyl-D-glucamine and to choline, but permeable to Na+, K+, Cs+, tris(hydroxymethyl)amino-ethane, and tetraethylammonium. N-formyl-L-methionyl-L-leucyl-L-phenylalanine, the Ca(2+)-ionophore A23187, and phorbol myristate acetate activated the cationic current. Activated currents showed voltage dependence and outward rectification. The Ca(2+)-chelator 1,2 bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetate markedly inhibited A23187-induced currents, but only partially decreased phorbol ester- or chemoattractant-induced currents. Dibutyryl cAMP diminished only the chemoattractant-induced currents. The adenosine analogs 5'N-ethylcarboxamidoadenosine and N6-cyclohexyladenosine blocked the currents induced by all agents. Thus, we conclude that activation and inhibition of cationic channels in human neutrophils involve both Ca(2+)-dependent and Ca(2+)-independent mechanisms.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources