Control of eye-head coordination during orienting gaze shifts
- PMID: 1377424
- DOI: 10.1016/0166-2236(92)90169-9
Control of eye-head coordination during orienting gaze shifts
Abstract
Combined eye and head displacements are routinely used to orient the visual axis rapidly (gaze). Humans can use a wide variety of head movement strategies. However, in the cat, comparatively limited eye motility forces a more routine and stereotyped use of head motion. Nevertheless, the same general principles of gaze control may be applicable to humans, rhesus monkeys and cats. The gaze control system can be modeled using a feedback system in which an internally created, instantaneous, gaze motor error signal--equivalent to the distance between the target and the gaze position at that time--is used to drive both eye and head motor circuits. The visual axis is moved until this error equals zero. Recent studies suggest that the superior colliculus of the cat provides brainstem eye and head motor circuits with the gaze motor error signal; such studies have led to speculation that information on ongoing gaze motion is fed back to the superior colliculus. It is still uncertain whether comparable collicular and brainstem neuronal mechanisms control gaze in the monkey.
Comment in
-
Are gaze shifts controlled by a 'moving hill' of activity in the superior colliculus?Trends Neurosci. 1993 Jun;16(6):214-8. doi: 10.1016/0166-2236(93)90157-h. Trends Neurosci. 1993. PMID: 7688161 No abstract available.
Similar articles
-
On the feedback control of orienting gaze shifts made with eye and head movements.Prog Brain Res. 2003;142:55-68. doi: 10.1016/S0079-6123(03)42006-2. Prog Brain Res. 2003. PMID: 12693254 Review.
-
Gaze control in the cat: studies and modeling of the coupling between orienting eye and head movements in different behavioral tasks.J Neurophysiol. 1990 Aug;64(2):509-31. doi: 10.1152/jn.1990.64.2.509. J Neurophysiol. 1990. PMID: 2213129
-
Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. III. Spatiotemporal characteristics of phasic motor discharges.J Neurophysiol. 1991 Nov;66(5):1642-66. doi: 10.1152/jn.1991.66.5.1642. J Neurophysiol. 1991. PMID: 1765799
-
Gaze shifts evoked by stimulation of the superior colliculus in the head-free cat conform to the motor map but also depend on stimulus strength and fixation activity.Exp Brain Res. 1994;101(1):123-39. doi: 10.1007/BF00243222. Exp Brain Res. 1994. PMID: 7843291
-
Neural control of 3-D gaze shifts in the primate.Prog Brain Res. 2003;142:109-24. doi: 10.1016/s0079-6123(03)42009-8. Prog Brain Res. 2003. PMID: 12693257 Review.
Cited by
-
Influence of static eye and head position on tone-evoked gaze shifts.J Neurosci. 2011 Nov 30;31(48):17496-504. doi: 10.1523/JNEUROSCI.5030-10.2011. J Neurosci. 2011. PMID: 22131411 Free PMC article.
-
The Influence of a Memory Delay on Spatial Coding in the Superior Colliculus: Is Visual Always Visual and Motor Always Motor?Front Neural Circuits. 2018 Oct 22;12:74. doi: 10.3389/fncir.2018.00074. eCollection 2018. Front Neural Circuits. 2018. PMID: 30405361 Free PMC article.
-
Arm-trunk coordination in the absence of proprioception.Exp Brain Res. 2003 Dec;153(3):343-55. doi: 10.1007/s00221-003-1576-4. Epub 2003 Sep 19. Exp Brain Res. 2003. PMID: 14504854
-
The influence of auditory and visual distractors on human orienting gaze shifts.J Neurosci. 1996 Dec 15;16(24):8193-207. doi: 10.1523/JNEUROSCI.16-24-08193.1996. J Neurosci. 1996. PMID: 8987844 Free PMC article.
-
Visual-Motor Transformations Within Frontal Eye Fields During Head-Unrestrained Gaze Shifts in the Monkey.Cereb Cortex. 2015 Oct;25(10):3932-52. doi: 10.1093/cercor/bhu279. Epub 2014 Dec 9. Cereb Cortex. 2015. PMID: 25491118 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous