Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Mar;105(3):657-66.
doi: 10.1111/j.1476-5381.1992.tb09035.x.

Alpha 4-2 beta 2 and other nicotinic acetylcholine receptor subtypes as targets of psychoactive and addictive drugs

Affiliations

Alpha 4-2 beta 2 and other nicotinic acetylcholine receptor subtypes as targets of psychoactive and addictive drugs

J Connolly et al. Br J Pharmacol. 1992 Mar.

Abstract

1. Xenopus oocytes were injected with various muscle and neuronal nicotinic acetylcholine receptor (ACh receptor, cholinoceptor) subunit RNA combinations and their pharmacological properties studied using two-electrode voltage clamp. The functional expression of one of these combinations, rat alpha 4-2 beta 2, has not been previously described. The alpha 4-2 mRNA is a splicing variant transcribed from the alpha 4 gene. In the experiments reported here, the alpha 4-2 beta 2 subtype was functionally indistinguishable from the alpha 4-1 beta 2 subtype. 2. For each subtype, the relative potency of nicotine compared with acetylcholine was obtained by estimating the relative concentration of nicotine which would elicit the same current response as 0.1 microM Ach. The ratios of these concentrations (nicotine: ACh) for the mouse muscle ACh receptor-(alpha 1 beta 1 gamma delta) was 96.1:1. In contrast, the ratios for the rat neuronal subtypes were: alpha 2 beta 2, 1.01:1; alpha 3 beta 2, 2.01:1; alpha 4 beta 2, 0.76:1 and alpha 4-2 beta 2, 0.76:1. The much greater relative nicotine sensitivity of the neuronal subtypes as compared with muscle receptors illustrates their potential to mediate the psychoactive and addictive effects of nicotine. However, it does not appear that the differences in relative nicotinic sensitivity among the neuronal receptors themselves can be used as a simple discriminative tool in neuronal tissue. 3. The slopes of the log dose-log response curves at low ACh concentrations were all greater than 1 but less than 2, suggesting that at least two agonist binding sites mediate the functional response of each hetero-oligomer. 4. The response of all the neuronal subtypes to ACh could be inhibited by the psychoactive drugs mecamylamine, amitriptyline, phencyclidine, trifluoperazine and promethazine. With the exception of the very potent antagonist, mecamylamine, the degree of block of the peak current to ACh produced by 10 microM concentrations of these drugs was remarkably similar (around 50%). 5. The degree of inhibition produced when the antipsychotic drug, trifluoperazine, was co-applied with ACh increased as the duration of application increased. Such an effect was not observed with promethazine, a related phenothiazine derivative which does not have antipsychotic actions.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Neurosci. 1987 Oct;7(10):3334-42 - PubMed
    1. Science. 1988 Apr 15;240(4850):330-4 - PubMed
    1. N Engl J Med. 1988 Nov 17;319(20):1318-30 - PubMed
    1. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2719-23 - PubMed
    1. Neuron. 1988 May;1(3):241-8 - PubMed

Publication types