Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Aug;9(2):307-13.
doi: 10.1016/0896-6273(92)90169-e.

Interaction of charybdotoxin with permeant ions inside the pore of a K+ channel

Affiliations

Interaction of charybdotoxin with permeant ions inside the pore of a K+ channel

C S Park et al. Neuron. 1992 Aug.

Abstract

Charybdotoxin (CTX) blocks high conductance Ca(2+)-activated K+ channels by binding to a receptor site in the externally facing "mouth." Toxin bound to the channel can be destabilized from its site by K+ entering the channel from the opposite, internal, solution. By analyzing point mutants of CTX expressed in E. coli, assayed with single Ca(2+)-activated K+ channels reconstituted into planar lipid bilayers, we show that a single positively charged residue of the peptide, Lys-27, wholly mediates this interaction of K+ with CTX. If position 27 carries a positively charged residue, internal K+ accelerates the dissociation rate of CTX in a voltage-dependent manner; however, if a neutral Asn or Gln is substituted at this position, the dissociation rate is completely insensitive to either internal K+ or applied voltage. Position 27 is unique in this respect; charge-neutral substitutions made at other positions fail to eliminate the K+ destabilization phenomenon. The results argue that CTX bound to the channel positions Lys-27 physically close to a K(+)-specific binding site on the external end of the conduction pathway and that a K+ ion occupying this site destabilizes CTX via direct electrostatic repulsion with the epsilon-amino group of Lys-27.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources