Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Aug 27;358(6389):758-61.
doi: 10.1038/358758a0.

Uncoupling of hypomyelination and glial cell death by a mutation in the proteolipid protein gene

Affiliations

Uncoupling of hypomyelination and glial cell death by a mutation in the proteolipid protein gene

A Schneider et al. Nature. .

Abstract

Proteolipid protein (PLP; M(r) 30,000) is a highly conserved major polytopic membrane protein in myelin but its cellular function remains obscure. Neurological mutant mice can often provide model systems for human genetic disorders. Mutations of the X-chromosome-linked PLP gene are lethal, identified first in the jimpy mouse and subsequently in patients with Pelizaeus-Merzbacher disease. The unexplained phenotype of these mutations includes degeneration and premature cell death of oligodendrocytes with associated hypomyelination. Here we show that a new mouse mutant rumpshaker is defined by the amino-acid substitution Ile-to-Thr at residue 186 in a membrane-embedded domain of PLP. Surprisingly, rumpshaker mice, although myelin-deficient, have normal longevity and a full complement of morphologically normal oligodendrocytes. Hypomyelination can thus be genetically separated from the PLP-dependent oligodendrocyte degeneration. We suggest that PLP has a vital function in glial cell development, distinct from its later role in myelin assembly, and that this dichotomy of action may explain the clinical spectrum of Pelizaeus-Merzbacher disease.

PubMed Disclaimer

Publication types