Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Jan 25;16(2):311-20.
doi: 10.1021/bi00621a024.

Mechanism of pigeon liver malic enzyme: kinetics, specificity, and half-site stoichiometry of the alkylation of a cysteinyl residue by the substrate-inhibitor bromopyruvate

Mechanism of pigeon liver malic enzyme: kinetics, specificity, and half-site stoichiometry of the alkylation of a cysteinyl residue by the substrate-inhibitor bromopyruvate

G G Chang et al. Biochemistry. .

Abstract

Malic enzyme from pigeon liver is alkylated by the substrate analogue bromopyruvate, resulting in the concomitant loss of its oxidative decarboxylase and oxalacetate decarboxylase activities, but not its ability to reduce alpha-keto acids. The inactivation of oxidative decarboxylase activity follows saturation kinetics, indicating the formation of an enzyme-bromopyruvate complex (K congruent to 8 mM) prior to alkylation. The inactivation is inhibited by metal ions and pyridine nucleotide cofactors. Protection of malic enzyme by the substrates L-malate and pyruvate and the inhibitors tartronate and oxalate requires the presence of the above cofactors, which tighten the binding of these carboxylic acids in accord with the ordered kinetic scheme (Hsu, R. Y., Lardy, H. A., and Cleland, W. W. (1967), J. Biol. Chem. 242, 5315-5322). Bromopyruvate is reduced to L-bromolactate by malic enzyme and is an effective inhibitor of L-malate and pyruvate in the overall reaction. The apparent kinetic constants (90 muM-0.8 mM) are one to two orders of magnitude lower than the half-saturation constant (K) of inactivation, indicating a similar tightening of bromopyruvate binding in the E-NADP+ (NADPH)-Mn2+ (Mg2+)-BP complexes. During alkylation, bromopyruvate interacts initially at the carboxylic acid substrate pocket of the active site, as indicated by the protective effect of substrates and the ability of this compound to form kinetically viable complexes with malic enzyme, particularly as a competitive inhibitor of pyruvate carboxylation with a Ki (90 muM) in the same order as its apparent Michaelis constant of 98 muM. Subsequent alkylation of a cysteinyl residue blocks the C-C bond cleavage step. The incorporation of radioactivity from [14C]bromopyruvate gives a half-site stoichiometry of two carboxyketomethyl residues per tetramer, indicating strong negative cooperativity between the four subunits of equal size, or alternatively the presence of structurally dissimilar active sites.

PubMed Disclaimer

Similar articles

Cited by

Publication types