Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep;90(3):785-90.
doi: 10.1172/JCI115952.

Extensive posttranscriptional deletion of the coding sequences for part of nucleotide-binding fold 1 in respiratory epithelial mRNA transcripts of the cystic fibrosis transmembrane conductance regulator gene is not associated with the clinical manifestations of cystic fibrosis

Affiliations

Extensive posttranscriptional deletion of the coding sequences for part of nucleotide-binding fold 1 in respiratory epithelial mRNA transcripts of the cystic fibrosis transmembrane conductance regulator gene is not associated with the clinical manifestations of cystic fibrosis

C S Chu et al. J Clin Invest. 1992 Sep.

Abstract

Cystic fibrosis (CF) is a recessive hereditary disorder, requiring both parental cystic fibrosis conductance transmembrane regulator (CFTR) genes to carry mutations for clinical disease to manifest, i.e., only 50% of normal CFTR gene expression is required to maintain a normal phenotype. To help define the minimum amount of normal CFTR gene expression necessary to maintain normalcy, we have capitalized on our prior observation (Chu, C.-S., B. C. Trapnell, J. J. Murtagh, Jr., J. Moss, W. Dalemans, S. Jallat, A. Mercenier, A. Pavirani, J.-P. Lecocq, G. R. Cutting, et al. 1991. EMBO [Eur. Mol. Biol. Organ] J. 10:1355-1363) that normal individuals can have up to 66% of bronchial CFTR mRNA transcripts that are missing exon 9, a region representing 21% of the sequence coding for the critical nucleotide (ATP)-binding fold 1 (NBF1) of the predicted CFTR protein. The study population included 78 individuals with no prior diagnosis of CF. Evaluation of bronchial epithelial cells (obtained by bronchoscopy) revealed that exon 9 was variably deleted in all individuals. Remarkably, there were four individuals, all greater than or equal to 35 yr, in whom bronchial epithelial cells exhibited 73, 89, 90, and 92% CFTR transcripts with inframe deletion of exon 9, respectively, despite normal sweat Cl- and no clinical manifestation of CF. In the context that only 8% or less of bronchial CFTR transcripts need exon 9 to maintain normal airway function, these observations strongly suggest that either exon 9 is not necessary for CFTR structure and/or function or that only a very small fraction of bronchial epithelial cells need to express normal CFTR mRNA transcripts with exon 9 to perform the function of CFTR sufficient to maintain a normal phenotype in vivo.

PubMed Disclaimer

References

    1. Am Rev Respir Dis. 1983 Jul;128(1):34-7 - PubMed
    1. Science. 1991 Jul 12;253(5016):202-5 - PubMed
    1. Ann Intern Med. 1976 Dec;85(6):769-88 - PubMed
    1. J Clin Invest. 1977 Sep;60(3):595-610 - PubMed
    1. Cell. 1991 Sep 6;66(5):1027-36 - PubMed

Publication types

Substances