Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Oct;40(10):1439-56.
doi: 10.1177/40.10.1382087.

Mapping of neural nitric oxide synthase in the rat suggests frequent co-localization with NADPH diaphorase but not with soluble guanylyl cyclase, and novel paraneural functions for nitrinergic signal transduction

Affiliations

Mapping of neural nitric oxide synthase in the rat suggests frequent co-localization with NADPH diaphorase but not with soluble guanylyl cyclase, and novel paraneural functions for nitrinergic signal transduction

H H Schmidt et al. J Histochem Cytochem. 1992 Oct.

Abstract

Nitric oxide synthases (NOS Types I-III) generate nitric oxide (NO), which in turn activates soluble guanylyl cyclase (GC-S). The distribution of this NO-mediated (nitrinergic) signal transduction pathway in the body is unclear. A polyclonal monospecific antibody to rat cerebellum NOS-I and a monoclonal antibody to rat lung GC-S were employed to localize the protein components of this pathway in different rat organs and tissues. We confirmed the localization of NOS-I in neurons of the central and peripheral nervous system, where NO may regulate cerebral blood flow and mediate long-term potentiation. GC-S was located in NOS-negative neurons, indicating that NO acts as an intercellular signal molecule or neurotransmitter. However, NOS-I was not confined to neurons but was widely distributed over several non-neural cell types and tissues. These included glia cells, macula densa of kidney, epithelial cells of lung, uterus, and stomach, and islets of Langerhans. Our findings suggest that NOS-I is the most widely distributed isoform of NOS and, in addition to its neural functions, regulates secretion and non-vascular smooth muscle function. With the exception of bone tissue, NADPH-diaphorase (NADPH-d) activity was generally co-localized with NOS-I immunoreactivity in both neural and non-neural cells, and is a suitable histochemical marker for NOS-I but not a selective neuronal marker.

PubMed Disclaimer

Publication types

LinkOut - more resources