Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Aug 14;588(1):29-40.
doi: 10.1016/0006-8993(92)91341-b.

Nerve growth factor responsiveness of cultured major pelvic ganglion neurons from the adult rat

Affiliations

Nerve growth factor responsiveness of cultured major pelvic ganglion neurons from the adult rat

J B Tuttle et al. Brain Res. .

Abstract

The bladder and other pelvic viscera are innervated in the rat by the major pelvic ganglion (MPG), a mixed sympathetic/parasympathetic population of neurons that participates in lower urinary pathophysiology. Neurons from the MPG of adult females were removed, dissociated and cultured in order to test retention of the neuronal phenotype and whether they responded to Nerve Growth Factor (NGF). The bladder-specific subset of MPG neurons were distinguished by retrograde labeling prior to culture. The adult ganglionic neurons adapted to culture with greater than 80% survival in the best cases. The cultured neurons retained excitability, as determined by measuring voltage-activated ionic currents. They were positive for neuron-specific beta-tubulin and many retained immunoreactivity for characteristic peptides and transmitter synthetic enzyme. The proportion of neurons in the different categories tested varied somewhat from that in vivo, but there was no evidence of selective death of a particular population. The cultured MPG neurons were responsive to NGF and anti-NGF antibody. NGF supported neuronal survival and expression of tyrosine hydroxylase. Added NGF also affected the expression of neuropeptide Y. Hypertrophied neurons from animals with experimental bladder outlet obstruction demonstrated increased responsiveness to NGF. The data suggest that NGF participates in adult neural plasticity due to continued responsiveness to the factor. Furthermore, questions concerning regulation of MPG neurons may be addressed in vitro.

PubMed Disclaimer

Publication types

LinkOut - more resources