Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Sep-Oct;20(5):753-61.

Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat

Affiliations
  • PMID: 1385058

Cytochrome P-450 3A enzymes are responsible for biotransformation of FK506 and rapamycin in man and rat

M Sattler et al. Drug Metab Dispos. 1992 Sep-Oct.

Abstract

The hepatic cytochrome P-450 responsible for metabolism of the structurally related macrolides FK506 and rapamycin in humans was identified using in vitro studies. FK506 and rapamycin metabolism was significantly correlated with nifedipine oxidation in human liver microsomes of eight different individuals. Immunoinhibition with anti-P450 3A4 abolished almost all FK506 and rapamycin metabolite formation. Inactivation of P450 3A4 by incubation of human liver microsomes with triacetyl oleandomycin (50 microM) or gestodene (10 microM) inhibited metabolism of FK506 and rapamycin. In liver microsomes from dexamethasone-treated rats FK506 and rapamycin metabolism was increased compared to liver microsomes from uninduced, phenobarbital-, or 3-methylcholanthrene-induced rats. FK506 and rapamycin were metabolized by reconstituted recombinant human liver P450 3A4. It is concluded that in human and rat liver FK506 and rapamycin are metabolized primarily by cytochrome P-450 3A4.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources