Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Nov 25;267(33):23447-50.

Protein tyrosine phosphatase-1C is rapidly phosphorylated in tyrosine in macrophages in response to colony stimulating factor-1

Affiliations
  • PMID: 1385421
Free article

Protein tyrosine phosphatase-1C is rapidly phosphorylated in tyrosine in macrophages in response to colony stimulating factor-1

Y G Yeung et al. J Biol Chem. .
Free article

Abstract

An approximately 64-kDa cytoplasmic protein is rapidly phosphorylated in tyrosine in the response of macrophages to colony stimulating factor-1. To identify this protein, BAC1.2F5 macrophages were incubated with or without colony stimulating factor-1, the phosphotyrosine-containing portion of their cytosolic fractions subjected to size exclusion chromatography, and the 45-70-kDa fraction further fractionated by reverse phase high pressure liquid chromatography (RP-HPLC). Tryptic peptides of pooled RP-HPLC fractions from stimulated cells (containing the approximately 64-kDa protein and an approximately 54-kDa protein) and from unstimulated cells (containing the approximately 54-kDa protein alone), were sequenced directly. All seven readable sequences of 8 sequenceable peptides present uniquely in the stimulated fraction were present in the sequence of the src homology 2 domain-containing protein tyrosine phosphatase-1C (PTP-1C). The identity of the approximately 64-kDa protein was confirmed by Western blotting with an antibody raised to a PTP-1C peptide. The rapid, growth factor-induced tyrosine phosphorylation of PTP-1C suggests that it may be involved in very early events in growth factor signal transduction.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources