Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Nov 25;267(33):24028-33.

Cleavage of membrane-anchored growth factors involves distinct protease activities regulated through common mechanisms

Affiliations
  • PMID: 1385433
Free article
Comparative Study

Cleavage of membrane-anchored growth factors involves distinct protease activities regulated through common mechanisms

A Pandiella et al. J Biol Chem. .
Free article

Abstract

The membrane-anchored forms of transforming growth factor-alpha (TGF-alpha) and stem cell growth factors (Kit ligands) KL-1 and KL-2 are converted to soluble growth factor forms by a regulated proteolytic cleavage process. Each of these proteins is cleaved at a distinct site, however their cleavage is activated via a common set of intracellular signaling mechanisms. By using a panel of protease inhibitors, we show here that at least two cell-associated serine protease activities with distinct specificities participate in membrane growth factor cleavage. Two serine protease inhibitors of broad specificity, diisopropylfluorophosphate and 3,4-dichloroisocoumarin, prevent the cleavage of proTGF-alpha and KL-1 but not that of KL-2. Of the agents tested, N-tosyl-L-phenylalanine chloromethyl ketone and various haloenol lactone derivatives are the most potent inhibitors of cleavage of all three membrane growth factors. It is concluded that cleavage of membrane-anchored growth factors involves a proteolytic system with multiple serine protease activities regulated through common mechanisms.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources