Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jul;263(1 Pt 1):C95-105.
doi: 10.1152/ajpcell.1992.263.1.C95.

Differences in regulation between nuclear and cytoplasmic Ca2+ in cultured smooth muscle cells

Affiliations

Differences in regulation between nuclear and cytoplasmic Ca2+ in cultured smooth muscle cells

B Himpens et al. Am J Physiol. 1992 Jul.

Abstract

The free Ca2+ concentrations in the nucleus ([Ca2+]n) and cytoplasm ([Ca2+]c) of cultured smooth muscle cells were estimated using the fluorescent dye indo-1 and the ACAS 570 confocal laser microscope. In resting DDT1MF2 smooth muscle cells [Ca2+]n was found to be lower than [Ca2+]c. Both values increased transiently in response to histamine (100 microM), but during this stimulation [Ca2+]n exceeded [Ca2+]c. Maximal increase of [Ca2+]n was observed in the center of the nucleus, and a maximal increase of [Ca2+]c was observed in the immediate vicinity of the plasma membrane. A similar response was obtained with other agonists, such as carbachol or ATP. Comparable results with ATP were obtained in cultured aorta cells. The differential rise of [Ca2+]n over [Ca2+]c in DDT1MF2 cells did not occur during either spontaneous release of Ca2+ or Ca2+ release induced by caffeine (7.5 mM). The differential rise during histamine stimulation was abolished by the presence of the intercalating substance ethidium bromide. Thapsigargin, a presumed specific inhibitor of the endoplasmic reticulum Ca(2+)-Mg(2+)-adenosine-triphosphatase, abolished the Ca2+ gradient between nucleus and cytosol at rest. During subsequent histamine stimulation the Ca2+ increase was largely blocked in both compartments and attained similar levels. We propose that the lower value of [Ca2+]n at rest is dependent on an active Ca2+ extrusion system. The differential rise of [Ca2+]n over [Ca2+]c during agonist stimulation can be explained by an influx of Ca2+ from perinuclear stores and/or by a release of intranuclear Ca2+ possibly mediated by a process dependent on the inositol lipid metabolism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources